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Introduction

Domain modeling@

Informal descriptions

Structured and unambiguous
representation leaving out
superfluous details

... using a concrete notation



Motivation

To promote and facilitate the
creation and manipulation of
domain models

— Broad variety of
* languages
* tools

Still, they are typically created
by hand!!!
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Morphological analysis & lemmatization

1. Perform a morphological analysis of each word
Part-of-Speech (POS) tagging

2. Lemmatization process

flyers lemmatized as a verb =2 fly

flyers lemmatized as noun -2 flyer

r: PRINCETON UNIVERSITY

We use WordNet
WordNet part of the Python NLTK (Natural Language Toolkit)
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https://wordnet.princeton.edu/
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Our approach

= Pilot |pilot| &= Flight : :
_ Model Recommendation Engine
[}
-é racti\.rity Recomm. Engine | @ Recomm. Engineu R
3 . NLP method for |
: < ' i |
Slice 1 Flight > [flights, e | oremeeting | yses
plane, : NLP models 11" - @ potential concepts ‘
p!lots, i general i
pilot, Text preprocessing | | knowledge |
flvin algorithm ' :
ﬂy & g i @ contextual | |
14 T Domain corpus &N | knowledge | |
airline, = of text L |
airlines : T Moroholoa b
. ’ 3 ']\ , Morphological i
airplane, &3 preprocess : analysis & |
jet] . lemmatization |\ /

o . , . . . . . . 15
L. Burguefio, R. Clarisd, S. Gérard, S. Li, J. Cabot: An NLP-Based Architecture for the Autocompletion of Partial Domain Models. CAIiSE 2021: 91-106




Our approach

= Pilot |pilot| = Flight ; ;
_ Model Recommendation Engine
[}
-é racti\.rity Recomm. Engine | @ Recomm. Engineu R
g  NLPmethodfor |
) - |
Slice 1: Flight = [plane, o i word embeddings | uses
1 o2
a|r||ne, i NLP models 11" B potential concepts ‘
. I -
airplane, | i L‘é refine ) )
. general " | |uses/B.3 : :
Jet, Text preprocessing i knowledge i /,’ >‘ Potential concepts refined ‘
flvin algorithm ' ' K
ﬂy] & 8 i &2 | | contextual W
Y = Domain corpus &N | . knowledge | |« ||/
= of text e S |
: A T Normholos
3 , Morphological L
, )
&3 preprocess ' analysis & :
. ___lemmatization 1| - o

o . , . . . . . . 16
L. Burguefio, R. Clarisd, S. Gérard, S. Li, J. Cabot: An NLP-Based Architecture for the Autocompletion of Partial Domain Models. CAIiSE 2021: 91-106




Our approach

= Pilot |pilot| = Flight . .
_ Model Recommendation Engine
(&)
-é racti\.rity Recomm. Engine | @ Recomm. Engineu R
3 i NLP method for |
& ' word embeddings
: : usgs,
i NLP models 4:— +1°° potential concepts ‘
How are the potential : | : % refine & ’
p . ! genera : uses/ L > potential concepts refined ‘
model elements that Text preprocessing | Az o bulld
) algorithm ' :
W|” be recommended 8 i @ contextual : @—L{ potential model elements ‘
built? S Domain corpus @I | | knowledge | |
' = of text L
E SEEv—— e
3 ']\ : Morphological Li,
&3 preprocess : analysis & :
. lemmatization | - -

o . , . . . . . . 17
L. Burguefio, R. Clarisd, S. Gérard, S. Li, J. Cabot: An NLP-Based Architecture for the Autocompletion of Partial Domain Models. CAIiSE 2021: 91-106




Our approach: Build

Different slices have different purposes

The model is sliced according to these patterns:

- one slice that contains all the classes in the model after removing their features
(attributes and relationships)
—> aims to suggest new classes
- remove verbs, adjectives and plural nouns
—> the remaining words are candidates to become new classes

18
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Our approach: Build

Different slices have different purposes

The model is sliced according to these patterns:

- one slice that contains all the classes in the model after removing their features
(attributes and relationships)
—> aims to suggest new classes
- remove verbs, adjectives and plural nouns
- the remaining words are candidates to become new classes

- one slice for each class C in the model (keeping its attributes and dangling
relationships)
— aims to suggest new attributes

- one slice for each pair of classes (keeping its attributes and dangling relationships)
—> aims to suggest new relationships
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Conclusions & Future Work

* First step towards a more general modeling assistant that
effectively helps specify better models faster

cyture!

* Integrate other types of information (e.g., past models, ontologies,...)

Work on the usability aspect & empirical study

Refine the techniques presented in this paper

b

Application on other types of models and modeling languages 3

Exploitation of other NLP models .-
—
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