Uncertainty in Software Models

Lola Burgueño
(part of joint work with more people)

Montreal, July 22, 2022

@LolaBurgueno
lburguenoc@uoc.edu
Uncertainty

Uncertainty: Quality or state that involves imperfect and/or unknown information

- It applies to: predictions of future events, estimations, physical measurements, or properties of a system, its elements or its environment
- due to:
 - Underspecification of the problem or solution domains
 - Lack of knowledge of the system, its environment, or its underlying physics
 - Lack of precision in measurements
 - Imperfect, incorrect, or missing information
 - Numerical approximations
 - Values and parameters indeterminacy
 - Different interpretations of the same evidences by separate parties

“There is nothing certain, but the uncertain” (proverb)
Uncertainty in mechanical systems
Many different formalisms and theories to quantify uncertainty

- Bayesian Belief Networks (BBN)
- Monte Carlo simulations
- Decision theory/trees
- Probabilities
- Fuzzy Logic
- ...
A classification of uncertainty (according to its nature)

- **Aleatory** Uncertainty – A kind of uncertainty that refers to the *inherent* uncertainty due to the *probabilistic variability or randomness* of a phenomenon
 - Examples: measuring the speed of a car, or the duration of a software development process
 - This type of uncertainty is *irreducible*, in that there will always be variability in the underlying variables.

- **Epistemic** Uncertainty – A kind of uncertainty that refers to *the lack of knowledge* we may have about the system (modeled or real).
 - Examples: Ambiguous or imprecise requirements about the expected system functionality, its envisioned operating environment, etc.
 - This type of uncertainty is *reducible*, in that additional information or knowledge may reduce it.

Types of uncertainty (according to their sources)

- **Measurement uncertainty**: A kind of *aleatory* uncertainty that refers to a set of possible states or outcomes of a measurement, where probabilities are assigned to each possible state or outcome.

- **Occurrence uncertainty**: A kind of *epistemic* uncertainty that refers to the degree of belief that we have on the actual existence of an entity, i.e., the real entity that a model element represents.

- **Belief uncertainty**: A kind of *epistemic* uncertainty in which a *belief agent* is uncertain about any of the *statements* made about the system or its environment.

- **Design uncertainty**: A kind of *epistemic* uncertainty that refers to a set of possible design decisions or options, where probabilities are assigned to each decision or option.

- **Environment uncertainty**: Lack of certainty about the surroundings, boundaries and usages of a system and of its elements.

- **Spatiotemporal uncertainty**: Lack of certainty about the geographical or physical location of a system, its elements or its environment, or about the time properties expressed in a statement about the system or its environment.

Measurement Uncertainty

![Probability distribution with median, mode, and mean highlighted.](image)
Measurement uncertainty

- **Measurement uncertainty**: A kind of *aleatory* uncertainty that refers to a set of possible states or outcomes of a measurement.

- Normally expressed by a parameter, associated with the result of a measurement x, that characterizes the dispersion of the values that could reasonably be attributed to the measurand: the standard deviation u of the possible variation of the values of x.

- Representation: $x \pm u$ or (x, u).

- **Examples**:
 - Normal distribution: (x, σ) with mean x, and standard deviation σ.
 - Interval $[a, b]$: Uniform distribution is assumed $\quad (x, u)$ with $x = \frac{a+b}{2}, \; u = \frac{(b-a)}{2\sqrt{3}}$.

However, the situation is not the same in software models.
Some problems with Measurement Uncertainty

- Computations with uncertain values must respect the *propagation of uncertainty* (uncertainty analysis)
 - In general, this is a complex problem, which cannot be manually managed

- *Comparison of uncertain values* is no longer a Boolean property!
 - How to compare 17.7 ± 0.2 with 17.8 ± 0.2?

- Other primitive datatypes are also affected by uncertainty
 - Strings (OCR)
 - Enumerations
 - Collections
UBooleans are pairs (b, c)
- where b:Boolean and c:Real, c ∈ [0, 1]
- c represents the **confidence** that the actual value of the value is indeed b
- Canonical form: (true, c)
- Equivalence relation: (b, c) = (not b, 1 - c)

Operations
- Redefined basic operations: and, or, not
- Redefined secondary operations: implies, equivalent, xor
- Conversion operations: toBoolean() and toBooleanC(c:Real)
Primitive datatypes extended with Uncertainty

- **Extended primitive datatypes**
 - Real → UReal UReal(17.8, 0.2) ≡ 17.8 ± 0.2
 - Boolean → UBoolean UBoolean(true, 0.8)
 - String → UString UString("Implementaci6n", 0.93)
 - Enum → UEnum UColor{ (#red, .9), (#orange, 0.09), (#purple, 0.01) }

- An algebra of operations on uncertain datatypes extending OCL/UML types
- Operations are **closed** in this algebra and automatically **propagate** uncertainty

```plaintext
use> ?UReal(17.7, 0.2) < UReal(17.8, 0.2)  -> UBoolean(true, 0.1974125487) : UBoolean
use> ?UReal(17.7, 0.2) = UReal(17.8, 0.2)  -> UBoolean(true, 0.8025874513) : UBoolean
use> ?UReal(17.7, 0.2) > UReal(17.8, 0.2)  -> UBoolean(true, 0.0) : UBoolean
```

Belief Uncertainty

propositions

well formed ill-formed

good guesses nonsense

true false

beliefs

knowledge

justified

denial lucky denial

false positives

(CC-BY 4.0) 2014 Ryan Reece philosophy-in-figures.tumblr.com
Belief uncertainty

- **Belief uncertainty**: A kind of *epistemic* uncertainty in which the modeler, or any other *belief agent*, is uncertain about any of the *statements* made about the system or its environment.
 - By nature, it is always *subjective*
 - *It may not always be possible to determine whether or not a belief statement is valid.*
 - A belief statement may not necessarily correspond to objective reality.
 - This means that it could be completely false, or only partially true, or completely true.
 - The validity of a statement may only be *meaningfully defined within a given context or purpose*.
 - Thus, the statement that “the Earth can be represented as a perfect sphere” may be perfectly valid for some purposes but invalid or only partly valid for others.

- **Belief agent**: An entity (human, institution, even a machine) that holds one or more beliefs

- **Belief statement**: *Statement* qualified by a *degree of belief*

- **Degree of belief**: Confidence assigned to a statement by a belief agent. Normally expressed by quantitative or qualitative methods (e.g., a grade or a probability “credence”)

Classical Boolean Logic

\[\text{false} = 0 \]
\[\overline{X} \text{ vertex (disbelief)} \]

\[\text{true} = 1 \]
\[X \text{ vertex (belief)} \]
false = 0

\(\overline{X} \) vertex (disbelief)

true = 1

\(X \) vertex (belief)
Kleene (three-valued) Logic

Uncertainty

\[X \text{ vertex (disbelief)} \quad \bullet \quad X \text{ vertex (belief)} \]
Subjective Logic

\[(0,0,1) \]

\[U \text{ vertex (uncertainty)} \]

\[(0,1,0) \]

\[X \text{ vertex (belief)} \]

\[(1,0,0) \]

\[\bar{X} \text{ vertex (disbelief)} \]

\[b_X \]

\[d_X \]

\[\omega_X \]

\[u_X \]

\[P_X \]

\[a_X \]
Subjective logic in UML/OCL

- **SBoolean**(*b*,*d*,*u*,*a*)
 - *b* represents the degree of **belief** that the agent has about the statement
 - *d* represents the degree of **disbelief**
 - *u* represents the **uncertainty** that the agent expressing the opinion has about the statement, i.e., the degree of trust
 - *a* is the (objective) **prior probability** assigned to the statement, based on previous evidence (also called “**base rate**”).

- \[b + d + u = 1 \]

- Boolean values lifted to SBoolean:
 - true ≡ SBoolean(1, 0, 0, 1)
 - false ≡ SBoolean(0, 1, 0, 0)

- UBoolean values lifted to SBoolean:
 - Uboolean(true,c) = SBoolean(c,1-c,0,c)

- Projection from SBoolean to UBoolean:
 - SBoolean(*b*,*d*,*u*,*a*).projection() = UBoolean(true, *b* + *u* *a)
Belief Profile
Belief Profile

![Diagram of a belief profile with classes and relationships]

SmartHouse
- `+house` (1)
- `+room` (0..*)

Room
- `+acOn : UBoolean`
- `+temperature : UReal`
- `+humidity : UReal`

bedroom1 : Room
- `acOn = UBoolean(true, 0.58)`
- `humidity = UReal(79.0, 1.0)`
- `temperature = UReal(25.0, 0.5)`

Agents and Beliefs
- `h : SmartHouse`
- Ada : Person
- Bob : Person
- Cam : Person

Beliefs
- `ada_temp : Belief
 agent = Ada
 opinion = SBoolean(0.95, 0.0, 0.05, 0.5)`
- `bob_temp : Belief
 agent = Bob
 opinion = SBoolean(0.1, 0.8, 0.1, 0.5)`
- `cam_temp : Belief
 agent = Cam
 opinion = SBoolean(0.2, 0.2, 0.6, 0.5)`
- `ada_humidity : Belief
 agent = Ada
 opinion = SBoolean(0.75, 0.15, 0.1, 0.5)`
- `bob_humidity : Belief
 agent = Bob
 opinion = SBoolean(0.5, 0.1, 0.4, 0.5)`
- `cam_humidity : Belief
 agent = Cam
 opinion = SBoolean(0.3, 0.3, 0.4, 0.5)`
Fusion Operators

- Merge the beliefs of different agents on the same model elements

<table>
<thead>
<tr>
<th>Belief Constraint Fusion (BCF)</th>
<th>Willingness to compromise</th>
<th>Assumed dependency between opinions</th>
<th>Vacuous opinion as neutral element</th>
<th>Preserve shared beliefs, and conflicting opinions are turned into vague belief</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO. If conflict, undefined result.</td>
<td>Only for fusion of agents' preferences</td>
<td>YES</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>Cumulative Belief Fusion (CBF)</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Averaging Belief Fusion (ABF)</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Weighted Belief Fusion (WBF)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Consensus and Compromise Fusion (CCF)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>

[1] Not applicable for fusing evidence from different agents to determine the most likely hypothesis or actual event.
[2] There are two types of Cumulative Belief Fusion operators: Epistemic Cumulative Fusion (E-CBF) and Aleatory Cumulative Fusion (A-CBF). Their use depends on the nature of the fused opinions.
Fusion Operators

<table>
<thead>
<tr>
<th>Fusion operator</th>
<th>Fused opinion</th>
<th>Projection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belief Constraint Fusion (BCF)</td>
<td>SBoolean(0.303, 0.687, 0.010, 0.579)</td>
<td>0.309</td>
</tr>
<tr>
<td>Consensus & Compromise Fusion (CCF)</td>
<td>SBoolean(0.494, 0.489, 0.017, 0.579)</td>
<td>0.503</td>
</tr>
<tr>
<td>Aleatory Cumulative Belief Fusion (ACBF)</td>
<td>SBoolean(0.470, 0.490, 0.040, 0.579)</td>
<td>0.493</td>
</tr>
<tr>
<td>Epistemic Cumulative Belief Fusion (ECBF)</td>
<td>SBoolean(0.000, 0.149, 0.852, 0.579)</td>
<td>0.493</td>
</tr>
<tr>
<td>Average Belief Fusion (ABF)</td>
<td>SBoolean(0.435, 0.454, 0.111, 0.579)</td>
<td>0.499</td>
</tr>
<tr>
<td>Weighted Belief Fusion (WBF)</td>
<td>SBoolean(0.453, 0.454, 0.093, 0.579)</td>
<td>0.507</td>
</tr>
</tbody>
</table>

Table 2. Results of applying the fusion operators on the opinions about the value of slot ac0n of bedroom1.
Tool Support. Profile + Plugin

- MagicDraw

![MagicDraw Diagram](image-url)
Conclusión

- Different kinds of uncertainty

- Need to capture, represent and operate with it

- Our contributions to
 - Measurement uncertainty
 - Belief uncertainty

- Future work
 - Empirically validate the usability and usefulness of our contributions with users in real contexts
 - Assist users use the proposed methods / techniques
 - UML/OCL might not be suitable for all users → explore different notations such as tailored DSLs, easier to adapt to the vocabulary and technical knowledge of specific user communities
Uncertainty in Software Models

Lola Burgueño
(part of joint work with more people)

Montreal, July 22, 2022

@LolaBurgueno
lburguenoc@uoc.edu