Uncertainty in Software Models

Lola Burgueño (part of joint work with more people)

Montreal, July 22, 2022

UOr

Uncertainty: Quality or state that involves imperfect and/or unknown information

 It applies to: predictions of future events, estimations, physical measurements, or properties of a system, its elements or its environment

- due to:
 - <u>Underspecification</u> of the problem or solution domains
 - Lack of knowledge of the system, its environment, or its underlying physics
 - Lack of precision in measurements
 - Imperfect, incorrect, or missing information
 - Numerical <u>approximations</u>
 - Values and parameters <u>indeterminacy</u>
 - Different <u>interpretations</u> of the same evidences by separate parties

Uncertainty in mechanical systems

Many different formalisms and theories to quantify uncertainty

- Bayesian Belief Networks (BBN)
- Monte Carlo simulations
- Decision theory/trees
- Probabilities

A classification of uncertainty (according to its nature)

- Aleatory Uncertainty A kind of uncertainty that refers to the *inherent* uncertainty due to the *probabilistic variability or randomness* of a phenomenon
 - Examples: measuring the speed of a car, or the duration of a software development process
 - This type of uncertainty is irreducible, in that there will always be variability in the underlying variables.
- Epistemic Uncertainty A kind of uncertainty that refers to the lack of knowledge we may have about the system (modeled or real).
 - Examples: Ambiguous or imprecise requirements about the expected system functionality, its envisioned operating environment, etc.
 - This type of uncertainty is reducible, in that additional information or knowledge may reduce it.

A. Der Kiureghian and O. Ditlevsen: "Aleatory or epistemic? Does it matter?" Structural Safety 31(2):105-112, 2009

Types of uncertainty (according to their sources)

- Measurement uncertainty: A kind of *aleatory* uncertainty that refers to a set of possible states or outcomes of a measurement, where probabilities are assigned to each possible state or outcome
- Occurrence uncertainty: a kind of *epistemic* uncertainty that refers to the degree of belief that we have on the actual existence of an entity, i.e., the real entity that a model element represents
- Belief uncertainty: A kind of *epistemic* uncertainty in which a *belief agent* is uncertain about any of the *statements* made about the system or its environment.
- Design uncertainty: A kind of *epistemic* uncertainty that refers to a set of possible design decisions or options, where probabilities are assigned to each decision or option
- Environment uncertainty: lack of certainty about the surroundings, boundaries and usages of a system and of its elements
- Spatiotemporal uncertainty: lack of certainty about the geographical or physical location of a system, its elements or its environment, or about the time properties expressed in a statement about the system or its environment

Javier Troya, Nathalie Moreno, Manuel F. Bertoa, Antonio Vallecillo. "Uncertainty representation in software models: A survey." Software and Systems Modeling (Sosym) 20(4):1183-1213, 2021.

Measurement Uncertainty

Measurement uncertainty

- Measurement uncertainty: A kind of *aleatory* uncertainty that refers to a set of possible states or outcomes of a measurement
- Normally expressed by a parameter, associated with the result of a measurement x, that characterizes the dispersion of the values that could reasonably be attributed to the measurand: the standard deviation u of the possible variation of the values of x
- Representation: $x \pm u$ or (x, u)
- Examples:
 - Normal distribution: (x, σ) with mean x, and and standard deviation σ
 - Interval [*a*, *b*]: Uniform distribution is assumed

$$(x, u)$$
 with $x = \frac{a+b}{2}, u = \frac{(b-a)}{2\sqrt{3}}$

JCGM 100:2008. Evaluation of measurement data – Guide to the expression of uncertainty in measurement (GUM). http://www.bipm.org/utils/common/documents/jcgm/JCGM 100 2008 E.pdf

Measurement uncertainty

However, the situation is not the same in software models

RoundObject		
+posX : Real +posY : Real +posZ : Real +weight : Real +width : Real +height : Real		
+move(dX : Real, dy : Real, dz : Real) +catch() +drop() +fitsln(other : RoundObject)		

Some problems with Measurement Uncertainty

- Computations with uncertain values must respect the *propagation of uncertainty* (uncertainty analysis)
 - In general, this is a complex problem, which cannot be manually managed
- Comparison of uncertain values is no longer a Boolean property!
 - How to compare 17.7 ± 0.2 with 17.8 ± 0.2 ?
- Other primitive datatypes are also affected by uncertainty
 - Strings (OCR)
 - Enumerations
 - Collections

UBoolean

- UBooleans are pairs (b, c)
 - where b:Boolean and c:Real, $c \in [0, 1]$
 - c represents the <u>confidence</u> that the actual value of the value is indeed b
 - Canonical form: (true, c)
 - Equivalence relation: (b, c) = (not b, 1 c)
- Operations
 - Redefined basic operations: and, or, not
 - Redefined secondary operations: implies, equivalent, xor
 - Conversion operations: toBoolean() and toBooleanC(c:Real)

Primitive datatypes extended with Uncertainty

- Extended primitive datatypes
 - Real -> UReal UReal(17.8, 0.2) = 17.8 ± 0.2
 - Boolean -> UBoolean UBoolean(true, 0.8)
 - String -> Ustring UString("Implementaci6n",0.93)
 - Enum -> UEnum UColor{ (#red,.9), (#orange,0.09), (#purple,0.01) }
- An algebra of operations on uncertain datatypes extending OCL/UML types
- Operations are *closed* in this algebra and automatically *propagate* uncertainty

M. F. Bertoa, N. Moreno, L. Burgueño, A. Vallecillo. "Incorporating Measurement Uncertainty into OCL/UML Primitive Datatypes." Software and Systems Modeling (Sosym), 2019. <u>https://doi.org/10.1007/s10270-019-00741-0</u>

Belief Uncertainty

Belief uncertainty

- Belief uncertainty: A kind of *epistemic* uncertainty in which the modeler, or any other *belief agent*, is uncertain about any of the *statements* made about the system or its environment.
 - By nature, it is always *subjective*
 - It may not always be possible to determine whether or not a belief statement is valid.
 - A belief statement may not necessarily correspond to objective reality.
 - This means that it could be completely false, or only partially true, or completely true.
 - The validity of a statement may only be meaningfully defined within a given context or purpose.
 - Thus, the statement that "the Earth can be represented as a perfect sphere" may be perfectly
 valid for some purposes but invalid or only partly valid for others.
- Belief agent: An entity (human, institution, even a machine) that holds one or more beliefs
- Belief statement: *Statement* qualified by a *degree of belief*
- Degree of belief: Confidence assigned to a statement by a belief agent. Normally expressed by quantitative or qualitative methods (e.g., a grade or a probability "credence")

Lola Burgueño, Robert Clarisó, Jordi Cabot, Sébastien Gérard, Antonio Vallecillo. "Belief uncertainty in software models." Proc. of MiSE 2019@ICSE, pp. 19-26. ACM, 2019. <u>https://dl.acm.org/citation.cfm?id=3340709</u>

Subjective logic in UML/OCL

- SBoolean(b,d,u,a)
 - b represents the degree of belief that the agent has about the statement
 - *d* represents the degree of *disbelief*
 - *u* represents the *uncertainty* that the agent expressing the opinion has about the statement, i.e., the degree of trust
 - *a* is the (objective) *prior probability* assigned to the statement, based on previous evidence (also called "*base rate*").
- *b* + *d* + *u* = 1
- Boolean values lifted to SBoolean:
 - true = SBoolean(1, 0, 0, 1)
 - false = SBoolean(0, 1, 0, 0)
- UBoolean values lifted to SBoolean:
 - Uboolean(true,c) = SBoolean(c,1-c,0,c)
- Projection from SBoolean to UBoolean:
 - SBoolean(b,d,u,a).projection() = UBoolean(true, b + u*a)

Belief Profile

ada_temp:Belief

agent = Ada opinion = SBoolean(0.95,0.0,0.05,0.5)

ada_humidity : Belief

agent = Ada opinion = SBoolean(0.75,0.15,0.1,0.5) <u>bob_temp : Belief</u>

agent = Bob

opinion = SBoolean(0.1,0.8,0.1,0.5)

bob_humidity : Belief

agent = Bob opinion = SBoolean(0.5,0.1,0.4,0.5) <u>cam_temp : Belief</u>

agent = Cam opinion = SBoolean(0.2,0.2,0.6,0.5)

	cam_humidity : Belief
agent =	Cam
opinion	= SBoolean(0.3,0.3,0.4,0.5)

Fusion Operators

Merge the beliefs of different agents on the same model elements

	Willingness to compromise	Assumed dependency between opinions	Vacuous opinion as neutral element	Preserve shared beliefs, and conflicting opinions are turned into vague belief
Belief Constraint Fusion (BCF)	NO. If conflict, undefined result.	Only for fusion of agents' preferences	YES	NO
Cumulative Belief Fusion (CBF)	YES	NO	YES	NO
Averaging Belief Fusion (ABF)	YES	YES	NO	NO
Weighted Belief Fusion (WBF)	YES	YES	YES	NO
Consensus and Compromise Fusion (CCF)	YES	YES	YES	YES

¹Not applicable for fusing evidence from different agents to determine the most likely hypothesis or actual event.

^[2] There are two types of Cumulative Belief Fusion operators: Epistemic Cumulative Fusion (E-CBF) and Aleatory Cumulative Fusion (A-CBF). Their use depends on the nature of the fused opinions.

Fusion operator	Fused opinion	Projection
Belief Constraint Fusion (BCF)	SBoolean(0.303, 0.687, 0.010, 0.579)	0.309
Consensus & Compromise Fusion (CCF)	SBoolean(0.494, 0.489, 0.017, 0.579)	0.503
Aleatory Cumulative Belief Fusion (ACBF)	SBoolean(0.470, 0.490, 0.040, 0.579)	0.493
Epistemic Cumulative Belief Fusion (ECBF)	SBoolean(0.000, 0.149, 0.852, 0.579)	0.493
Average Belief Fusion (ABF)	SBoolean(0.435, 0.454, 0.111, 0.579)	0.499
Weighted Belief Fusion (WBF)	SBoolean(0.453, 0.454, 0.093, 0.579)	0.507

Table 2. Results of applying the fusion operators on the opinions about the value of slot acOn of bedroom1.

Tool Support. Profile + Plugin

MagicDraw

Toponyms-ObjectModel-mer X			٩	⊳ ≣
★ → 12: 10: 0 1 1 1 1 1 1 1 1 1 2 2 2 1 1 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 2 2 1 1 2	¢	- 🛛 - 🖃 - 🔍		
282				
Selection				^
B ♣ I beliefs = a_Ziri, b_Ziri		Specification	Enter	
Common ContainElements «UncertainElementFusion» aleatoryCumulativeBF = "SBoolean(0.67, 0.14, 0.18, 0.25)"		Diagram Properties	Shift+Enter	
Note Visit Person are = "Ziri b Manad definition of the second	많	Select in Containment Tree	Alt+B	
al-Sinhayi" consensusCompromiseBF = "SBoolean(0.65, 0.13, 0.22, 0.25)" epistemicCumulativeBF = "SBoolean(0.62, 0.00, 0.38, 0.25)"		Go To	>	
weightedBF = "SBoolean(0.64, 0.11, 0.25, 0.25)"		Display	>	
Contraint		Related Elements	>	
Anne: Geographer Brandon: Librarian		Refactor	>	
A Dependency actini : Belief b Ziri : Belief agent = Anne agent = Brandon		Tools	>	_
Spendency opinion = "SBoolean(0.1, 0.2, 0.7, 0.25)" opinion = "SBoolean(0.7, 0.1, 0.2, 0.25)"		Stereotype		
Cobject Diagram		Complete		
	惑	Fuse available opinions	Alt+Shift+F	~
				>

Conclusión

- Different kinds of uncertainty
- Need to capture, represent and operate with it
- Our contributions to
 - Measurement uncertainty
 - Belief uncertainty
- Future work
 - Empirically validate the usability and usefulness of our contributions with users in real contexts
 - Assist users use the proposed methods / techniques
 - UML/OCL might not be suitable for all users → explore different notations such as tailored DSLs, easier to adapt to the vocabulary and technical knowledge of specific user communities

Uncertainty in Software Models

Lola Burgueño (part of joint work with more people)

Montreal, July 22, 2022

UOr