

Colloquium at **GEODES Seminar Series** Montreal, 2022

Systematic Reviews with ReLiS

Prof. Eugene Syriani

Outline

1. Background on systematic reviews

2. Tool support: ReLiS

3. Challenges of conducting systematic reviews

4. Discussion: systematic review RL4SE

Secondary research

Narrative review

- Overview of current knowledge in a topic
- Informal survey

Systematic review

- More detailed and rigorous
- Review a research question
- Reproducible methodology for searching papers and analyzing results

Meta-analysis

 Systematic review with statistical analysis to compare papers and derive new interpretations or new findings

Systematic review (SR)

(Kitchenham, 2004)

Research strategy used to extract new knowledge from existing studies

• Collect empirical proofs from existing studies corresponding to eligibility criteria to answer a specific research question

• Systematic \Rightarrow methodological, repeatable, low bias

Systematic reviews in software engineering (SE)

- Systematic Literature Review (SLR) (Kitchenham, 2007)
 - Collects, synthesizes, and analyzes results of primary studies
 - Studies them in detail to answer precise questions empirically
 - Quality of primary studies is important
- Systematic Mapping Studies (SMS) (Petersen, 2015)
 - A.k.a. Scoping review
 - Classifies primary studies into categories to demonstrate research trends in a domain
 - Overview of a research domain and on quantity of available research
 - Analyzes a larger corpus than SLR

Process of Systematic Literature Reviews

Université - 6 -

Process of Systematic Mapping Studies

Process Steps Definition of Research Question All Papers Relevant Papers Classification Systematic Map

Outcomes

(Petersen et al., 2015)

Université m de Montréal - 7 -

Systematic review process Iterative process!

Planning

Need to perform SR	Research questions	Paper identi strateg		Study selection strategy			
 Scientific, temporal reasons Number of primary studies available New review or update 	 Scope Objectives PICOTS format Time interval 	 Data sources Keywords Automatic search Manual search Snowballing Duplicate resolution Pilot studies 		 Inclusion, exclusion criteria Phases: meta-data, entire text Number and role of reviewers Conflict resolution strategy 			
Evaluation of stu quality		Data extraction and synthesis strategy		Dissemination strategy			
Q&A check list	 Classification 	 Classification scheme 		 Report of protocol 			
Quality threshold	Data extrac	 Data extraction form 		Publication of results			

Bias risk

Quantitative and qualitative analysis techniques of the data

- Publication of results
- Appendix for bibliography, extracted data, statistical analysis

Conducting

Identify candidate studies

- Execute search
- Collect meta-information and complete text
- Clean corpus, eliminate duplicates, correct references

Study selection

- Multiple phases
- Distribution of screening among reviewers
- Conflict detection
- Conflict resolution
- Validation by expert

Quality assessment

- Identify control list of studies
- Evaluate each study by answering to precise questions
- Decide to include/exclude study with low score

Data extraction and synthesis

- Fill data extraction form per retained study
- Collaboration among reviewers
- Conflict detection and resolution
- Validation by expert
- Synthesize to statistically analyze data

Reporting

Publish corpus

• References of included studies

Publish extracted data

- Tabular format
- Explanation of codes

Publish protocol report

- Who, Where, How
- Pilot studies
- Manual corrections

Publish results

- As a scientific contribution
- Good motivation
- Related work on topic and on methodology
- Interpret findings

PRISMA flow diagram

PRISMA flow diagram (simplified)

Notable standards

- PRISMA checklist <u>https://prisma.shinyapps.io/checklist/</u>
- **PICOTS** to formulate scope
- Methodology for systematic literature reviews (Kitchenham et al., 2007)
- Methodology for systematic mapping studies (Petersen et al., 2015)
- Guide to **snowballing** (<u>Wohlin, 2014</u>)
- Systematic review **updates** (<u>Mendes et al., 2020</u>)
- **Experimentation** in software engineering (Wohlin et al., 2012)

Problem in conducting SR

Tool support for SR

- Reference management & text-mining
 - EndNote, RefWorks, Zotero, JabRef, **BiBler**
- Specific to software engineering
 - StArt, Parsifal, SESRA, SLuRP, SRLTOOL, **ReLiS**
- Used in other disciplines
 - Eppi Reviewer, Convidence, DistillerSR, RevMan

Cannot modify configuration of SR procedure on-the-fly Cannot pilot reviews

ReLiS

<u>B. Bigendako and E. Syriani.</u> **Modeling a Tool for Conducting** <u>Systematic Reviews Iteratively</u>. Model-Driven Engineering and <u>Software Development. Scitepress: 1, pp. 552–559 (2018)</u>

The team

- Brice Bigendako's M.Sc. thesis (main initial developer)
 - https://papyrus.bib.umontreal.ca/xmlui/handle/1866/20187
- Mitacs GlobalLink interns (improving functionalities)
 - Naveen Kumar, Purboshi Das, Gauransh Kumar
- Student projects
 - Mahamat Youssouf Issa (test automation),
 Lucas Hornung (report generation)
- Research assistant: Naima Essadi (integration)
- Supervision: Prof. Eugene Syriani

ReLiS

Flexible tool for conducting SR collaboratively and iteratively

QCODCS ≥SEMINAR

Systematic Reviews with ReLiS – Eugene Syriani, 2022

Université **m** - 20 - de Montréal

ge<mark>o</mark>des

SEMINAR

EndNote

- 23 -

Université m de Montréal

- 24 -

Université m de Montréal

ge**o**des ≥seminar

geodes ≥SEMINAR

- 27 -

Université m de Montréal

ge<mark>o</mark>des ≥seminar

Design-time input type

- General purpose

Schema

🖶 Programming Language 🛛 🛨 Domain specific

ReLiS in action

https://youtu.be/EFkMGfwCBsM

In this video we will show how to perform a systematic review following this process:

유 >> 글 두

https://youtu.be/U5zOmk2vWy8

Feature coverage

Weight	Top ranked high-level features	StArt	Parsifal	SESRA	ReLiS	SLuRP	SLRTOOL	SLR-Tool
10	Collaboration Support	100%	100%	100%	100%	100%	66%	0%
9	Integrated Search	26%	62%	53%	9%	17%	17%	17%
8	Traceability	100%	75%	75%	75%	25%	50%	50%
7	Support Text Mining	23%	30%	7%	0%	14%	14%	14%
6	Support Inclusion and Exclusion	60%	30%	30%	40%	20%	30%	30%
5	Support Quality Assessment	100%	50%	50%	100%	50%	50%	50%
4	Data Maintenance	100%	100%	100%	50%	100%	100%	100%
3	Automated Analysis	50%	50%	50%	67%	66%	33%	33%
2	Visualization	60%	60%	60%	67%	90%	60%	60%
1	Coding of Methods and Data	14%	0%	0%	86%	14%	14%	0%
1	Storage of Studies	66%	66%	66%	67%	66%	66%	66%
Total score		68%	63%	59%	55%	48%	44%	32%

Feature coverage evaluation using (Al-Zubidy et al., 2017)

- 4th place on high level requirement: 55%
- 2nd place with no Integrated search + Text mining: 76%
- 1st place on all requirements: 58%

ReLiS tool availability

http://relis.iro.umontreal.ca

https://github.com/geodes-sms/relis

Tools to use with ReLiS

Bibliography curation

EN <u>EndNote</u>: collects abstracts + keywords, efficient duplicate detection, collaboration

JabRef Zotero: grouping, extract directly from web

Analysis of extracted data

Reporting

Tips using ReLiS Setup and import

- Assign roles appropriately: administrator, project manager, validator, reviewer
- You may need to **query the database** for more advanced manipulations
- Typical workflow to import papers:
 - 1. Download references from online databases in EndNote format (ensure abstract is available)
 - 2. Create groups for each source
 - 3. Eliminate duplicates
 - 4. Export them to BiBler Export format
 - 5. Import them into BiBler, clean, and save
 - 6. Import them into ReLiS

Tips using ReLiS Screening

- Beware that all statistics are updated continuously
 - If you add new papers in a screening phase, all statistics are going to be updated
 - If you resolve conflicts they will not appear in the statistics and kappa anymore
- > Take screenshots of the statistics page at key moments

• Project managers can **reassign papers** to other reviewers if needed

Tips using ReLiS Data extraction

- Define your **classification schema before** producing data in the project
 - Every category should be properly defined
 - If you significantly change the classification scheme after screening, create a new project with classification only and import the included papers from the other project
- Use **DynamicList** fields as much as possible for better statistics and more flexibility
- Maintain a log of important milestones in a separate document, e.g.
 - Date and number of imported papers from a source, search string
 - Date of each activity and screenshot of their statistics

Challenges encountered in Systematic Reviews

Lessons learned from applying SLRs in SE (Brereton et al., 2007) + mine

Challenges encountered in SR 1. Specify research questions

Expect to **revise RQs during protocol** development, as your understanding of the problem increases

Not while conducting the review!

A pre-review mapping study may help in scoping RQs

Include an RQ about **publication trends** and an RQ about **tool support** when appropriate

Challenges encountered in SR 2. Develop review protocol

All reviewers must collaborate to develop the review protocol

Piloting the protocol is essential to find mistakes in data collection, may indicate to change the methodology to address the RQs

Challenges encountered in SR

3. Validate review protocol

Specific validation process separate from the protocol

Ideally, external reviewers should undertake this validation process

Challenges encountered in SR

4. Identify relevant research

Explore **alternative search strategies** to achieve different sort of search completion criteria

Search many **different sources**: no single source indexes all studies in SE ACM DL, IEEE Xplore, SpringerLink, Web of Science, Google Scholar, Scopus

Some excluded papers (especially secondary studies) can make up your **related work**

Challenges encountered in SR 5. Select primary studies

The standard of SE **abstracts** is too poor to rely on when selecting primary studies: also review the **conclusions**

Make sure all reviewers understand the **inclusion** and **exclusion criteria**: the scope must be well-defined

Decide when to resort to **snowballing**: missed articles, enlarge corpus

Université ท

Challenges encountered in SR 6. Assess study quality

Some disciplines require a QA step, but in SE it depends: Sometimes for SLR, not for SMS

Decide how **QA** is used in data aggregation and analysis

Challenges encountered in SR 7. Extract required data

For large corpus, have 2 reviewers for each paper: one **data extractor** and one **data checker**

Make sure **everyone understands** the protocol and data extraction process

Identify **clusters** of papers for repeated/similar studies

46 -

Université 🧰

Challenges encountered in SR 8. Synthesize data

Systematic reviews in SE are likely to be **qualitative** in nature

Tabulating data is a useful aggregation, yet explain how the aggregated data actually **answers the RQs**

Explain or interpret unexpected observed phenomena from the results

Université 👘

Challenges encountered in SR 9+10. Write review report + Validate report

Keep a detailed **record of decisions** made throughout the review process

To validate it, publish a **technical report**, have it reviewed then write a scientific paper about the findings

Report threats to validity and how they have been mitigated

Read other systematic reviews

Examples of systematic reviews in SE

[1] E. Syriani, L. Luhunu, and H. Sahraoui. Systematic Mapping Study of Template-based Code Generation. Computer Languages, Systems & Structures: 52(1), pp. 43–62 (2018)

- [2] T. Kosar, S. Bohra, and M. Mernik. Domain-specific
 Ianguages: A systematic mapping study. Information [6] M. Lamothe, Y. Guéhéneuc, and W. Shang. A Systematic and Software Technology: 71, pp. 77–91 (2016)
 Review of API Evolution Literature. ACM Computing
- [3] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman. Systematic literature reviews in software engineering A systematic literature review. *Information and Software Technology*: 51(1), pp. 7–15 (2009)
- M. Franzago, D. D. Ruscio, I. Malavolta, and H. Muccini.
 Protocol for a Systematic Mapping Study on Collaborative Model-Driven Software Engineering. arXiv: abs/1611.02619 (2016)

 [5] M. Franzago, D. D. Ruscio, I. Malavolta, and H. Muccini.
 Collaborative Model-Driven Software Engineering:
 A Classification Framework and a Research Map.
 Transactions on Software Engineering: 44(12), pp. 1146– 1175 (2018)

Surveys: 54(8), pp. 1–36 (2021) [7] Misbhauddin, M., Alshayeb, M. UML model refactoring: a systematic literature review. Empirical Software Engineering: 20, pp. 206–251 (2015)

[8] E. Nascimento, A. Nguyen-Duc, I. Sundbø, and T. Conte. Software engineering for artificial intelligence and machine learning software: A systematic literature review. arXiv: 2011.03751 (2020)

Discussion

Systematic review on The use of reinforcement learning in SE

RQ1: What characteristics of SE problems RL has been used for?

- What SE problem? In what SE activity? How is the RL method presented?

RQ2: What characteristics of RL methods have been used in SE?

– What type of RL? What RL algorithm? How are state/policy/value function/reward signal represented? To what extent is the environment modeled? How are the results of the RL method presented/explainable?

RQ3: What RL tools are used and how they are integrated in the process?

- Tool popularity in RL and SE communities? Documentation? Appreciation by SE?

RQ4: What are the typical challenges and limitations of using RL in SE?

RQ5: What are the publication trends in RL in SE?

